For the best hands-on experience, it's ideal to print it on A3 paper, but A4 works fine if your eyesight is sharp.

Page 1

DATA CLEANING CHALLENGE

Clean data, better decisions: A hands-on approach to data cleaning

Session objectives

By the end of the session, the participants will be able to:

- Identify and correct various types of data issues
- Understand the critical role of documenting data cleaning processes

Contents Data cleaning

The process by which raw data are transformed into data that are of an appropriate quality for statistical analysis. This process involves two key steps:

- Identifying errors & inconsistencies in the data
- Correcting & managing these issues to ensure accuracy & reliability

Learning activities

- Hands-on practice
- Discussion

Duration

One hour

To access additional resources, scan the QR code:

We value your feedback. Kindly scan the QR code to share your thoughts:

For any inquiries, feel free to reach out to: Awatef awatef.an@moh.gov.mv Diane chong.dwq@moh.gov.my

"When you have marked off five squares in a row, call out "Bingo!" and get ready to share what you found."

Item 1 on your Bingo box is

As you eveball the dataset, if

you notice that a particular entry

appears more than once with the

exact same information, you've

Mark off this square on your

Possible data errors

Identical records

- Identical ID & identical values in all variables
- Identical ID & identical values in some variables
- Identical ID but different values for all other variables

Inconsistencies between variables

- Related variables in a dataset show conflicting information
- Example: Age = 8 years old, with 5 pregnancies

Extreme values

- Data points that are much larger or smaller than the rest of the data.
- Example of outliers:
- Height 275 cm
- Weight 5 kg (in study amongst elderly)

Code range

- Occurs when an input falls outside the predefined value range of values
- Example:
- 1 male
- 2 female
- 3 means???

Logical sequence error

- Issue in the chronological order of events
- Example:
- Dates are out of order. - If an end date precedes a start date

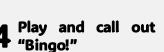
Data entry errors

- Mistakes made during the process of inputting data into a system/ database
- Example:
- Misspelled words
- 43 instead of 34

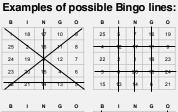
Ensuring Data Integrity for QA/QI Initiatives

By Awatef Amer Nordin & Diane Chong Woei Quan

Understand


Examine dataset & identify data issues

Review the dataset of 50 babies' birthweights and their mothers' information. Check for any mistakes.


The data dictionary explains what each variable represents and how it should be formatted.

Understand the variables, their definitions, and the types of data involved.

Familiarising yourself with these details will make it easier to identify inconsistencies or errors.

Your goal is to complete any FIVE lines on your Bingo card. These could be rows, columns, or diagonals.

Your Bingo box is your guide

Each box represents a data cleaning task related to common data errors.

and fixing these issues.

story behind the data Low birth weight increases

risk of other health the issues later in life. To address this, it is essential to understand its risk factors. This study aimed to identify

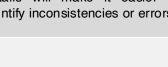
those risk factors. Familiarise with the Bingo box &

error list

for this activity.

You will also receive a corresponding list of data errors (no. 1-25). Think of it as your checklist for spotting

the


Then, move on to another square of your choice.

Bingo card.

Example:

"Duplicate entry".

identified a duplicate.

 Defir unde

Cons

Page 3

DICTIONARY DATA

Key principles

ey principles	(2022-2023)					
Defines variables for clear	Variable name	Variable label	Variable definition	Variable type		
understanding	id	ID of case	Unique identifier	Categorical		
Consistency in data handling & structure	baby_sex	Baby sex	1= male 2= female	Categorical		
Reduces mistakes by outlining acceptable values, ranges & categories for each variable	race	Race group	malay chinese indian	Categorical		

Reference guide for current & future data users

Variable name	Variable label	Variable definition	Variable type
deliverydate	Date of delivery. Data was collected 2022- 2023	Date in DD/MM/YYYY	Date
weight_kg	Birth weight of baby in kilogram	Weight of baby at birth in kg	Continuous
weight_gp2	Birth weight of baby in groups. Low birth weight (LBW) refers to weight of <2500 grams regardless of gestational age; macrosomia refers to the body weight reaching or exceeding 4000 grams	lbw normoweight macrosomia	Categorical
gesAge	Gestational age (number of weeks of pregnancy)	Number of weeks	Continuous
gesCat	Gestational age in category. Gestational age of 37 weeks or more is classified as not premature	premature not premature	Categorical

outcome

dead

Variable name	Variable label	Variable definition	Variable type
momAge	Mother's age at delivery	Age of mother in years	Continuous
no_pregnant	Pregnancy number	Number of pregnancies	Continuous
resident_area	Residential area	1 = urban 2 = rural	Categorical
mEver_smoke	Mother's smoking status (ever smoked)	1= yes 0= no	Categorical
mCurrentSmoke	Mother's current smoking status	1= yes 0= no	Categorical
noCig_day	Number of cigarette smoked in a day (current)	Number of cigarettes currently smoked per day	Continuous

for Baby Birth Statistics (2022 2022)

0= dead

Baby sex	1= male	Categorical	3.	Identify dates that are in the wrong format.
	2= female		4.	Locate any dates that do not exist in the
Race group	malay chinese	Categorical		calendar.
	indian others		5.	Check if the delivery dates are within the data collection period (2022-2023).
Baby alive or	1= alive	Categorical		

Note: Errors 6-12 may be reviewed together.

List of data errors

the same.

information.

1. Identify rows where all the data is exactly

2. Check if the same ID has different

Note: Errors 3-5 may be reviewed together.

- 6. Check if all birth weights are recorded as numerical values.
- Look for birth weights that are too high or too low.
- 8. Check that the birth weight category (low birth weight, normal weight, macrosomia) aligns with the weight in kilograms
- 9. Locate gestational ages that fall outside of the expected range (i.e., less than 20 weeks or more than 44 weeks).
- 10. Check that the gestational category (premature or not premature) matches the number of weeks of pregnancy.
- 11. Check if the baby's weight is appropriate for the number of weeks of pregnancy
- 12. Check for consistency between birth weight, gestational age, and outcome.

Note: Errors 13–15 may be reviewed together.

- 13. Identify any maternal age values that are biologically implausible.
- 14. Check that maternal age and number of pregnancies are consistently treated as continuous variables (numbers).
- 15. Verify that the number of pregnancies is consistent with the mother's age and biologically plausible.
- 16. Review observations that fall outside the expected range for categorical variables (e.g., expected codes are 1-2 for baby sex).

B		Ν	G	0
---	--	---	---	---

5	12	7	19	23
4	17	25	11	16
22	2	18	1	9
8	13	20	6	24
15	3	14	10	21

- 17. Check for any categories that are unexpected or wrongly labelled (e.g., race malay, chinese, indian, others).
- 18. Identify instances where free text has been used for observations that should have specific options (e.g., 1 for urban and 2 for rural in residential area data).

Note: Errors 19-22 may be reviewed together.

- 19. Check for logical consistency between ever smoked and current smoking status.
- 20. Check that the number of cigarettes field is appropriately filled or left blank when it should be.
- 21. Check that smoking status matches the number of cigarettes reported.
- 22. Review logical consistency between all smoking-related variables.
- 23. Identify any unnecessary spaces or special characters in the dataset.
- 24. Check that all key variables are complete (e.g., study outcome and other main variables).
- 25. Locate any rows in the dataset that are completely empty or only have a few observations filled.

	Α	В	С	D	E	F	G	н	I	J	К	L	M	N	0]
	id	baby_	race	deliverydate		weight_gp2	gesAge	gesCat	outcome	momAge	no	resident_	mEver_	mCurrent	noCig_	
		sex		_	• •			-	Juicome		pregnant		smoke	smoke	day	4
	001	1	malay	27/7/2022	2.27	lbw Ibw	37 27	not premature	1	25	2		0	0	6	
	002		malay	27/7/2022	2.27	lbw	37 50	not premature	1	25	2		0	0	6	
	003	2	chinese	21-Jan-22	10	normo-weight "	50	not premature	0	150	.4	2	0	0		
	004	2	indian	31-Jan-22	abc	lbw	34	not premature	1	60	ten	1	0	1		
	005	1	non-citizen	23-Jan-22	1.2	lbw .	18	not premature	0	42	1	·	1	1	12	
	006	1	malay	31/4/2023	5.5	macrosomia	38	not premature	1	15	3	1	0	0		
	007	1	malay	1/2/2023	1.05	normoweight	40	not premature	1	35	2	1	0	0		
	008	2	indian	20/6/2022	3.75	normoweight	37	Premature	1	25	3		0	0		
	009	1	chinese	15/1/2022	2.27	lbw	37	not premature	1	10	4	1	0	0		
)	010	1	malay	22/5/2023	2.5	normoweight	39	not premature	1	25	2	2	0	0		_
	011	3	bknwarga	12/8/2022	3.97	normoweight	38	not premature	1	60	4	1	0	0		
-	012	1	malay	14/9/2023	0.75	lbw	20	premature	0	18	ten	2	1	0	6	
	013	2	chinese	31/12/2022	1.5	lbw	30	premature	0	10	3	1	1	1		
	014	1	indian	29/10/2022	3.85	normoweight	39	not premature	!	25	2	2	0	0		
,	015	2	malay	4/11/2023	4.99	normoweight	11	not premature	alive	35	2	1	0	0		
;	016	1	indian	15/1/2023	10	macrosomia	44	not premature	dead	60	1	2	0	0		-
,	017	2	chinese	5/12/2022	0.8	lbw	22	not premature	0	25	8	1	0	0		
}	018	2	malay	25/3/2023	2.27	normoweight	37	not premature	!	10	4	2	0	0		Conv
)	019	2	other	14/6/2022	5.5	macrosomia	42	not premature	0	42	2	1	0	0		20
)	020	2	malay	7/8/2022	1.5	lbw	12	premature	0	25	3	2	0	0		Poli
	021	2	chinese	17/9/2022	2.5	normoweight	37	not premature	1	60	2	1	0	0		D
	022	1	indian	20/10/2023	3.75	normoweight	41	not premature	1	35	4	2	0	0		_
	023	1	malay	25/11/2023	2.27	lbw	12	premature	1	10	3	1	1	1	20	
	024	1	chinese	30/7/2022	4.99	normoweight	39	not premature	1	25	2	1	1	1	1	Tue
	025	2	indian	29/12/2022	3.85	macrosomia	44	not premature	1	60	2	1	0 0	0	25	Octo
	026	3	non-citizen	15/3/2023	0.8	lbw	22	not premature	0	35	10	1	0	0 0		2
	027	4	malay	25/6/2023	2.5	normoweight	38	not premature	1	10	2	2	0	0 0		
	028	2	chinese	1/12/2022	3.75	normoweight	37	not premature	1	25	3	2	0	0		Appe
)	020	- 1	indian	11/7/2023	1.5	lbw	28	premature	1	35	4	1	0	0		_
)	029	1	malay	15/9/2023	1.8	lbw	20	premature	0	60	4	1	0	0		Dat
	031	2	malay	25/10/2023	2.3	lbw	24	premature	1	22	1	1	0	0		Risk
	032	<u>د</u> ۱	chinese	5/12/2022	2.3 5.5	macrosomia	38	not premature		33	3	1		0		for lo
	032	2	indian	15/3/2023	5.5 1.9	lbw	30	premature	0	38	6	2	I I			We
		ے ۱		29/8/2023				•	4	i i		3		0		
•	034	1	malay		2	lbw pormowoight	22	premature	 -	19	2 3	3		0 0		
	035	1	chinese	22/7/2022	3.8	normoweight	37 19	not premature		27	ა ₁			-		
	036	2	indian	14/2/2023	0.9	lbw	18	premature	0	16	1	2	0	0	10	
	037	1	malay	11/11/2022	4.2	macrosomia	42	not premature	1	28	4		0	1	12	
	038	1	chinese	21/9/2025	2.6	normoweight	36	not premature	1	24	2			0		
	039	2	indian	17/4/2025	3.2	normoweight	40	not premature	1	31	3		0	0		
	040	2	malay	13/6/2025	2.2	lbw .		premature	1	21	2	1	0	0		_
	040	1	chinese	10/3/2023	5.1	macrosomia		not premature	1	29	3	1	0	0		
	041	1	indian	1/12/2022	1	lbw	22	premature	0	34	2		0	0		
	042	2	malay	28/9/2022	2.7	normoweight	38	not premature	1	26	4	1	0	1		
	043	2	chinese	6/7/2023	4	normoweight	41	not premature	1	30	3	1	0	0		
	044	1	indian	19/5/2022	1.8	lbw	26	premature	0	40	5	1				
	045	1	malay	15/8/2023	5.3	macrosomia	39	not premature	1	33	4	kl				
	046	2	chinese	18/2/2023	0.5	lbw	10	premature	1	41	3	kapit				
3	047	2	indian	23/7/2023	4.5	normoweight	39	not premature	1	22	1	pendang	0	0		
Э	048	1	malay	7/1/2023	3.9	normoweight	40	not premature		36	3	kl	0	0		
)	049	1	chinese	14/4/2023		U U	38	not premature		25	2	kuching	1	1	15	
1	050			[

Page 5

Solutions for Data Cleaning Challenge (Part 2)

- 17. Check for any categories that are unexpected or wrongly labelled (e.g., malay, chinese, indian, others).
- Row 11 has "bknwarga: 0 instead of a coded race (code range; see Table 1).
- 18. Identify instances where free text has been used for observations that should have specific options (e.g., 1 for urban and 2 for rural in residential area data).
- 0 Rows 46- 50 free text entries like "kapit" and "kl" in column O. which should follow the predefined codes for residential areas (data entry errors; see Table 1).
- 19. Check for logical consistency between ever smoked and current smoking status. if "ever smoked" is 0 marked as 0 in row 7,
 - "current smoke" should not be 1.

- 20. Check that the number of cigarettes field is appropriately filled or left blank when it should be.
 - For rows where "current smoke" is marked as 0 (e.g., row 3), the number of cigarettes in column P should be blank (see Table 3 and 4).
 - 21. Check that smoking status matches the number of cigarettes reported.
 - o If "current smoke" in column N is marked as 1. there should be a non-zero number of cigarettes reported in column P (e.g., row 5 where the smoking status and cigarette number may be inconsistent: Table 3 and 4).
 - 22. Review logical consistency between all smoking-related variables.
 - For example, row 12 has a smoking status of "current smoke" as 1, but the number of cigarettes is 0, which needs correction (see Table 3 and 4).

- 23. Identify any unnecessary spaces or special characters in the dataset. Row 18 contains
- 0 unnecessary characters, such as '!', and row 15 includes unnecessary spaces (e.g., 'alive').
- 24. Check that all key variables are complete (e.g., study outcome and other main variables).
- Rows 49 and 50 are 0 missing outcome data, and rows 40 and 41 are missing gestational age data. All missing data in these columns should be reviewed and addressed.
- 25. Locate any rows in the dataset that are completely empty or only have a few observations filled.
- Row 51 is completely \circ empty, and row 50 has many missing fields. These rows should be flagged and investigated for potential removal or further clarification.

- 1. Identify rows where all the data is exactly the same.
- Review rows 1 and 2, where the ID in column A is different, but all other data are identical. These rows should be flagged for further investigation and potential correction.
- 2. Check if the same ID has different information.
- o Row 41-42: ID 040 is duplicated but contains different information. Ensure the data consistency for this ID and correct as needed.
- 3. Identify dates that are in the wrong format.
- Rows 3. 4. and 5 contain dates that do not follow the expected DD/MM/YYYY date format. For example, row 3 has "21-Jan-22"
- 4. Locate any dates that do not exist in the calendar.
- Row 6: "31/4/2023" would be **invalid date** and
- 5. Check if the delivery dates are within the data collection period (2022-2023).
- Review rows like 38 and 39, which contain dates in the year "2025," outside of range from the expected data collection period.
- 6. Check if all birth weights are recorded as numerical values.
- Non-numerical values such as "abc" in row 4 should be corrected to ensure all birth weights in column F are numerical.

Solutions for Data Cleaning Challenge (Part 1)

7. Look for birth weights that

are too high or too low.

8. Check that the birth

kilograms.

weight category (low

birth weight, normal

weight, macrosomia)

aligns with the weight in

of 2.27kg is marked as

"normoweight", which

should be corrected.

9. Locate gestational ages

that fall outside of the

expected range (i.e., less

than 20 weeks or more

Entries like row 3, with a

weeks, should be flagged

also Panel 2 (page 6) and

as extreme value. See

gestational age of 50

than 44 weeks).

Table 2 (page 7).

0

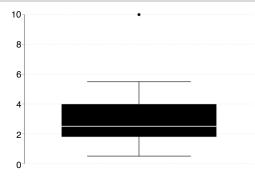
- - Review entries like row 3, where a birth weight of "10 kg" is entered, which seems excessively high. These outliers should be verified or corrected. See also Panel 1 (page 6) and Table 2 (page 7).
- - in row 18, a birth weight

- should be corrected.
 - 10. Check that the gestational category (premature or not premature) matches the number of weeks of
 - pregnancy. • Row 5: Gestational age of 18 weeks is marked as "not premature," which should be corrected.
 - 11. Check if the baby's weight is appropriate for the number of weeks of pregnancy
 - Row 15 reports a baby at 11 weeks gestation with a weight of 4.99 kg (see Panel 6).

- 12. Check for consistency between birth weight, gestational age, and outcome.
- Row 47 reports a birth 0 weight of 0.5 kg at 10 weeks gestation with the outcome "alive", which is biologically improbable (see Panel 7).
- 13. Identify any maternal age values that are biologically implausible.
- Row 3 has a maternal 0 age of 150 years, which is biologically impossible (see also Panel 3 and Table 2).
- 14. Check that maternal age and number of pregnancies are consistently treated as continuous variables (numbers).
- Row 12 lists "ten" as the 0 number of pregnancies, which should be corrected to a number (data entry errors).
- 15. Verify that the number of pregnancies is consistent with the mother's age and biologically plausible.
- 0 Row 9 reports a mother's age as 10 years with 4 pregnancies (see Panel 4 and 5).
- 16. Review observations that fall outside the expected range for categorical variables (e.g., expected codes are 1-2 for sex of baby).

0

Row 11 reports the baby's sex as 3, and Row 27 as 4, both of which are outside the expected range (code range). See also Table 1 (Page 7).


Data Examination & Error Identification

Page 7

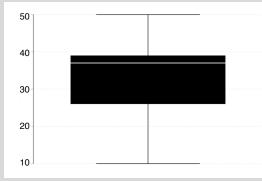
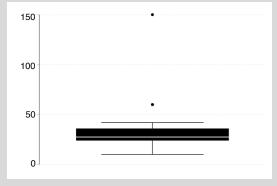
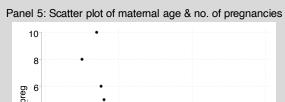
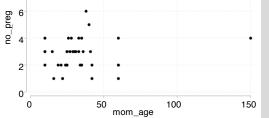

Figure 1: Box plot distribution of key variables (Panels 1-4) Figure 2: Scatter plots of key

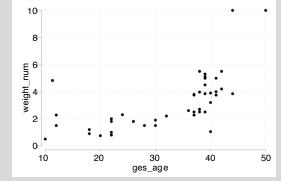
Figure 2: Scatter plots of key variables (Panels 5-6) and box plot by infant outcome (Panel 7)




Panel 2: gesAge (gestational age)




Panel 3: mom_age (mother's age)


Panel 4: no_preg (Number of pregnancies)

Panel 6: Scatter plot of gestational age & infant weight

Panel 7: Box plot of gestational age by infant outcome

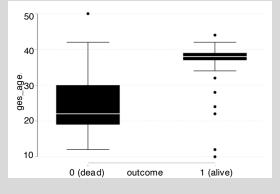


Table 1: Descriptive statistics for baby's sex, race, and residential area (n=50)

	Freq.	Percent
baby_sex		
1	26	50.98
2	21	41.18
3	2	3.92
4	1	1.96
missing	1	1.96
race		
bknwarga	1	1.96
chinese	14	27.45
indian	13	25.49
malay	19	37.25
non-citizen	2	3.92
other	1	1.96
missing	1	1.96
resident_area		
1	30	58.82
2	12	23.53
3	1	1.96
kapit	1	1.96
kl	2	3.92
kuching	1	1.96
pendang	1	1.96
missing	1	1.96

Table 2: Summary statistics for key variables

Obs	Mean	Std. dev.	Min	Max
48	3.15	2.05	0.5	10
50	33.26	9.41	10	50
50	33.04	21.81	10	150
48	2.98	1.68	1	10
	48 50 50	48 3.15 50 33.26 50 33.04	Obs Mean dev. 48 3.15 2.05 50 33.26 9.41 50 33.04 21.81	Obs Mean dev. Min 48 3.15 2.05 0.5 50 33.26 9.41 10 50 33.04 21.81 10

Table 3: Cross tabulation of ever smoked by current smoking status

	mCurrentSmoke						
mEverSmoke	0	1	missing				
0	36	3	0				
1	1	5	0				
missing	0	0	6				

Table 4: Incor	nsistent smoking	status records	
id	mEver_smok		noCig_day
	е	oke	
004	0	1	missing
013	1	1	missing
043	0	1	missing